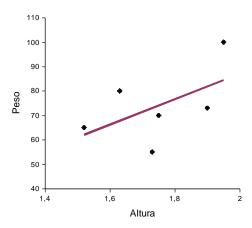
Ficha de Trabalho – Reconhecimento de Padrões

Docente: Miguel Tavares Coimbra Data: 13/04/2013

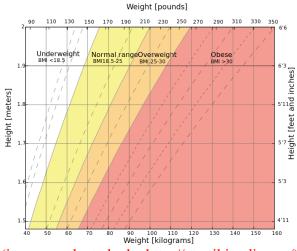

1. Representação do conhecimento.

a. Considere a seguinte tabela. Usando uma folha de cálculo, faça um gráfico 2D com os valores contidos nesta.

Indivíduo	1	2	3	4	5	6
Peso	1,75	1,90	1,52	1,63	1,95	1,73
Altura	70	73	65	80	100	55

Este gráfico está desenhado na figura em baixo.

b. Por observação do gráfico, consegue dizer quais destas pessoas podem ser consideradas gordas? E magras?



Para resolver esta pergunta é necessário, mesmo que mentalmente, dividir o *espaço de características* em dois sub-espaços: gordo e magro. A linha de regressão linear dá esta pista, propondo uma divisão do espaço em dois. No entanto conseguimos perceber que nem todas as classificações nos inspiram a mesma confiança. Podemos confiar num ponto que está quase sobre a linha de regressão?

c. Formalize este seu "reconhecimento de um padrão", criando uma *Regra* (par *condição-acção*) para cada uma destas situações.

Já fazemos isto! Como? Chamamos-lhe 'índice de massa corporal' e dividimos o espaço de características em várias 'classes'. A World Health Organization propõe estas regras de 'reconhecimento de padrões' aqui:

http://apps.who.int/bmi/index.jsp?introPage=intro_3.html

(imagem adaptada de: http://pt.wikipedia.org/)

d. Aplique a sua regra aos indivíduos anteriores, preenchendo a seguinte tabela. (*Regra A: Gordo / Não gordo; Regra B: Magro / Não magro*).

Indivíduo	1	2	3	4	5	6
Regra A						
Regra B						

Esta pergunta tem como objectivo percebermos que muitas vezes não chega ter uma regra 'binária'. Se criarmos uma regra para determinar se uma pessoa é gorda ou não, não estamos a afirmar nada sobre ser magra (pode não ser uma coisa nem outra). Isto quer dizer que teríamos que traçar duas linhas sobre o nosso gráfico da página anterior, se usarmos regras simples. Formalmente estamos a criar dois classificadores diferentes que actuam sobre o mesmo espaço de características, criando assim duas sub-divisões diferentes de espaço. Porque é que isto é importante? Porque não há nenhuma restrição formal que evite que os sub-espaços se sobreponham podendo acontecer algo estranho como uma pessoa ser considerada ao mesmo tempo gorda e magra se não formos cuidadosos.

e. Considere uma nova tabela. Classifique mentalmente cada pessoa como gorda, magra ou normal. Aplique as regras criadas na alínea c). Os resultados são concordantes?

Indivíduo	7	8	9	10
Peso	1,72	2,05	1,67	1,82
Altura	85	95	65	61
Classificação Manual				
Classificação Automática				

Esta pergunta destina-se a perceber as diferenças entre a minha classificação 'certa' (assumindo que a manual assim o é) e a criada por uma simples regra. Ou, pensando nos slides da cadeira, a diferença entre o mapa (e os seus detalhes nas fronteiras) de uma regra simples de latitude e longitude.

2. Reconhecimento estatístico de padrões.

a. Considere que criou um algoritmo que segmenta objectos circulares de uma fotografia a preto e branco. O seu objectivo é identificar se estes círculos correspondem a bolas escuras ou claras. Classificando manualmente as várias fotografias, obteve os seguintes resultados:

Bolas escuras	1	2	3	4	5	6	7	8	9	10
Luminosidade Média	10	55	152	34	175	101	77	163	44	95

Bolas claras	1	2	3	4	5	6	7	8	9	10
Luminosidade Média	230	243	180	134	244	153	180	175	220	215

 Calcule a média e o desvio-padrão da distribuição da luminosidade de cada uma das classes.

Classe	Média	Desvio-Padrão
A: Bolas escuras		
B: Bolas claras		

c. Assumindo que cada classe têm uma distribuição Gaussiana, calcule a probabilidade destas novas bolas serem claras ou escuras. Perante estas probabilidades, tome uma decisão: "A bola é escura" ou "A bola é clara".

$$Gauss_{pdf} = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Bolas	1	2	3	4	5	6	7	8	9	10
Luminosidade Média	90	145	133	132	146	223	252	204	78	195
Decisão										

d. O resultado correcto está descrito na tabela seguinte. Calcule a precisão do seu classificador. (*C-Clara, E-Escura*)

Bolas	1	2	3	4	5	6	7	8	9	10
Resultado	E	E	C	Е	C	C	C	C	E	E

$$Precisão = \frac{Nr.Correcto de Class.}{Nr.Total de Class.}$$

Estas perguntas são bastante directas sendo apenas necessário aplicar as fórmulas pedidas.

3. Aprendizagem máquina.

 a. Para conhecer mais profundamente os métodos discutidos na aula teórica, pode aceder a este excelente repositório online de tutoriais: http://www.autonlab.org/tutorials/